SAND75-0117
Unlimited Release

A TIME-OF-FLIGHT CALCULATION FOR PARAXIAL IONS
FIELD-DESORBED FROM SHARP NEEDLE EMITTER S

J. A. Panitz

@ Sandia Laboratories

© SF 2900 Q{7-73)




Issued by Sandia Laboratories, operated for the United States Energy
Research and Development Administration by Sandia Corporation.

NOTICE

This report was prepared as an account of work sponsored by
the United States Government. Neither the United States nor
the United States Energy Research and Development Admini-
stration, nor any of their employees, nor any of their contrac-
tors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility
for the accuracy, compieteness or usefulness of any information,
apparatus, product or process disclosed, or represents that its use
would not infringe privately owned rights.




SAND75-0117

A TIME-OF-FLIGHT CALCULATICON FOR PARAXTAL TONS
FIELD-DESORBED FROM SHARP NEEDLE EMITTERS

J. A, Panitz _
Sandia Laboratories, Albuquerque, New Mexico 87115

ABSTRACT

Paraxial travel times are calculated for positive ions accelerating between
the surface of a8 field emitter and an opposite, grounded cathode. The electrode
geomefry is approximated by confocal paraboloids of revolution with the aperature
in the ground electrode ignored in order to obtain an expression for the
potential in closed form. By integrating the resulting velocity over the
interelectrode distance, the travel time can be obtained in terms of the time
required for the ion to drift the same distance with a constant velocity equal
to its final velocity at the cathode. The resulting contribution to the
measured travel time in associated time-of-flight mass spectrometers is
evaluated, and shown to be important for species with small mass-to-charge

ratios detected in spectrometers with short drift distances.
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In order to calculate the travel time of ions between the surface of a
field-ion micrésccpe specimen (tip) and grounded cathode, it is necessary to
choose a potential model which realistically approximates the true electrode
geometry. Approximating the tip and cathode as concentric spheresl results in
a simple analytic expression for the travel time. Unfortunately, the model is
unrealistic since it ignores the true shape of the specimen. A more satisfac-
tory approximation is to choose the tip and ground electrode as two members of
e family of confocal paraboloids of revolution. The resulting potential dis-

3 L

tribution, first obtained by Eyring et al.2 and later used by Rose~” and Russell
to calculate electron tré&ectories in an idealized field emission microscope,
can be used to obtain an ordér of megnitude calculation for fhe travel time of
ions in the field-desorption spectrameter and the atom-probe field ion micro-
scope.5 The specimen surface and shank will be approximatéd by a paraboloid of
revolution having & vertex radius of curvature equal to the radius of the imaged
portion of the specimen. This radius can be easilyclculated once én analytical
expression for the potential (and the corresponding electric field at the surface
of the specimen) is obtained. The grounded cathode enclosing the tip assembly
will be approximated by a second confocal paraboloid; the geometry forcing its
vertex radius of curvature to be numerically equal to twice the actual tip to
electrode distance. The aperture in the electrode, through which the ions pass,
will-be ignored in the calculation. The origin of coordinates will be chosen,
for convenience, at the focus of the paraboloid reprgsen£ing the specimén. ”

(Figure la).



Because of the geometry, the potential is most easily found by expressing
Laplace's equation in confocal parabolic coordinates. Consider confocel para-
boloids of revolution about the z-axis. The ordinary cartesian coordinates

(x, ¥, z) are related to the confocal parabolic coordinates (§, n, ¢) by the

transformations:
X = (§n)% cosg (1)
y = (&) sing (2)
z =3 -§) (3)

From these transformmtions, the metric in the confocal paraboloidal system can
be found. It is, in fact, for this orthogonal curvilinear coordinate system,

Just:
3 z
ds = %<:—+ 1) dg + —%(?y 1) an + (§n)%d¢ (&)

Now, consider only the family of confocal paraboloids of revolution described
by n = constant. Since only n will enter into the boundary conditions, the
potential must depend only upon this coordinate. In other words, laplace's

equation in curvilinear coordinates, for this special case, reduces to:

o= 2 [—kﬁ—é—@]—o (5)

hhbghv an hv an

where the scale factors hn, hg’ and hv are found from the metric to be:

n = ~<% . 1>§ (6)
b = %(2— + 1)1'5 (7)

and:
h, = (sn)% (8)



Substitution of (6), (7), and (8) into (5) yields:

d ds
(&) -o (9)
which can be integrated twice with respect to 7n to give, for the potential:

¢ =Clnn+3B (10)

It is now convenient to express nm in terms of the cylindrical coordina.tes (r,z)
where 2z is measured as before, and r, the perpendiculer distance from the z-axis

to the point of interest is just:
2 2\%
r=(x"+y)* (11)
In terms of these new coordinates (r,z) the potential, ¢, becomes:

é=ClnI:z+(r2+z2)%]+B (12)

where the equality:

n=z+ (24 2P)E (13)

has been used, and can be verified from the transformation equations (1) - (3).

At the specimen surface, z = z_and ¢ = Vo' At the other electrode where z = z

(o] 12

¢ = 0. Combining these boundary conditions with equation (10) gives, for the

potential:

5 = i 1n |22 G° + )% (14
T 1n Zzo7zl5 2z, )
which is equivalent to:

v 2, 2\%
5 0 ln[z+z(l+r/z )E} (15)




For the special case of paraxial ions r/z << 1, and the corresponding axial

potential is Just:

Vo 2z
5 = 1n |22 (16)
In (z zl [?zl]

The electric field strength at the specimen surface is, from equation (16) just:

22 7 = %o L (17)
3z 'z = zo - In 2207215 zO

But the vertex tip radius 3 is 220. This can be demonstrated by considering
the parabola formed by thé intersection of the paraboloid of revolution
representing the tip; with, say, the y-z plane, and recalling that at the tip
for points near the z-axis, n = 2z . Combining this result with equation (13)
and the general expression for the radius of curvature R of a section of arc
gives:

R =2z (18)

Since the best image field, F, for helium is approximately 4.5 V/A, equation
(17) can be used to predict the tip radius, R. Solving that equation for R
and setting F = 4.5 V/A gives:

v
0

t s [% In (R/zzl-)] (19)

For the field desorption spectrometer, with zl = .00l m, equation (19) predicts
that an 8 kV tip (V0 = 8 kV) will have a radius of 322.2 &, which is in good

agreement with experimental data obtained by net plane ring counting.



The kinetic energy of a paraxial ion, at a position gz in space where the potential

d=v(z) is just:
b = a (v, - v(z)) (20)

Its travel time is obtained by integrating the velocity over the distance
- traveled. That is:

z z
fl dz dz

T v(z)
/Jzo v o {%% (Yo - V(Z))]%

Using equation (16) for the potential, the travel time beccmes:

(21)

% z dz
. ,
T —(EQV) j; [l In (z/24) ]% (22)

This integral may be transformed into a more convenient form by defining:

quantity, 4, such that:

In (z /2 (23)
Then, the travel time becomes: 3
[18 (z,/2)]
b4 2
T = 2T, [1:1 (zo/do)] % e™ ay

O

(2k)

where Zq = do, the distance between electrodes, and Tt is the terminal travel

N -
T, =4, [27._—\2] g = ne (25)

time:



The terminal travel time is Jjust the time required by an ion, having acquired

its terminal velocity:

t

(=)
v, =\ » 4 =ne (26)

to drift through a field-free region equal in extent to the tip-to-ground
electrode distance, do.

Plots of Tt/(§>% as a function of total specimen potential, Vo’ are given
in Figure 1 for three velues of do.

The integral in equation (24) is just the error integral defined by:
X
2 - 3 5 7
2 2 X X X
| o eT wsertl) =z [""3‘“*‘5‘.'27"'7737“'] (27)

[0/

so that equation (24) can be written:

Z0 % % x2 x)'L x6
T=-2T, 7= |In (2,/4,) In (z/2) | x [L-F+5gr-7g7* | (28)

[0/

Where:

X = [ln (zo/z):l % (29)
Defining:

y = 1n (z /2) (30)

allows equation (28) to be written:

1
Zo Zo Zo\ |2 P *
T=2T g [ln(?-B) “‘“(T)] [l AR -7-3’] -
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or equivalently:
2z Zg

= 2 e —_—
oo, 2

Consider the speical case z = do' Then T is just the tip-to-ground electrode

z 1 o |-1n (z_/z)|Y
ln(’f) : 2 [v!(2v0+ 1% (32)

travel time, T , and equation (32) becomes:

=]

-1n (R/24 )Y
=2 =2 | m (8/2a) \; [v!(zv — i)J (33)

Figure 2 is a graph of Té/Tt for various values of R/do. To obtain the curve,
200 values of R/do were taken, and for each the series in equation (33) was
evaluated. Sufficient terms were included (usually about 30) so that the sum
of the series was always accurate to seven decimal places. For single atom
mass spectrometers with z, = .001 m, and R = 322.2 X (8 ¥V tip) Figure 2

L 1
predicts that Tt/(%>§ = .81 nsec/(amu)® and Figure 2 that:

T_/T, = 1.06 (3)

Then To’ the actual specimen-to-ground electrode travel time is, just:

1
T, (nanoseconds) =0.859(§)2 (35)

To evaluate the effect of To on species identification in a time-of-
flight, single~atom mass spectrometer, we will use the expression for the
kinetic energy of an ion species after leaving the grounded cathode cap

located at z = Z)5

11



and the drift distance, D, between this electrode and the detector:

d=v, T (37)
The actual time-of-flight, Tmeas’ of the ion is just the sum of its drift time,

TD’ and the time taken, To’ to tranverse the acceleration region:

D
= + = — e .
Tmeas TD To v To (38)

ct

Combining equations (36) and (38) gives, for the identity of the unknown species:

, T |2
m . 2e 2 ‘0
E,(amv) =5 VoTheas |1 - F : (39)
g D mesas

Equation (39) may be rewritten, to a first approximation, as:

O meas

Lamv) =2y P [1 - A] (40)

where the first term in brackets is the usual expression6 for the mass-to-charge
ratio of the unknown species, and the second term is the acceleration correction
A= T_QEQ._ (41)
meas

Using the first order approximation

T ~opl—B_
meas 2neVo 2

and equations (25) and (33), the acceleration correction is obtained:

- woig) & =
where: [__ / ]
1n R/2do
G(zdo> 2do z 5t (ov+1) (2d8)
8

Practically, &, varies slowly for 10 2do <£5x 10 -5 and, therefore, can be

treated as a constant for all specimen radii of interest. For do = .00l

12



A=1.89 (D

.118m)

A =0,29 (D

1.0 m)

Where & has been calculated from the computer program of Appendix 1. The +
acceleration correction is negligible for long drift distances (D > 1m), but

must be considered for all short drift distance spectrometers. Specifically,
T

for the 10-cm atom-probe’ (D = .118m), equation (BO) becomes:

- (.193) 2
yd % = (.9%82) 18 Vo Tmeas

13
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Appendix 1

PROGRAM CORRT( INPUTsOUTPUT) e
PRUGRAM TO CALCULATE THE TRAVEL TIME CURRECTION DUE TO
ACCELERATION NEAR THE SPECIMENT o---R/2D0=Z.5-2T04ATMEAS=CL ..
(1e0OM DRIFT)s C2(4118M DRIFT) ’

7=0 ¢B5F~U7 R e e s e e o i
DO 1 K=1s100" =
SHM =0 o O - N e e s oo e e i -
TERM=14UF~-U6

FAC: le ——

ZLOG= ALOG(Z)

N0 2 I=1s20uU e e e
RI= 1 ;
FAC= FACH#RI e e et e e
PTERM=TERM

RNUM= (=ZL0G)#*] ) A e e
DENOM= FAC*((2e%*RT)+1a) o
TERM= RNUM/DFNOM - S
QUM=SUM+TFRM -
IF(ARBS( TERM-PTERM) eLTele0E~06) -6GL-TQ 3~ -
CONTINUF

TO= 2e¥Z#ARS(ZLOG) *(1eU+SUM)

Cl= 2%TO%¥,001

C2= Cl/.118 e e
C= leU - C1 ¥
C3z 140 = (2 et e e e
PRINT 49 Z5T091sC1sC29CsC3

72z7+045F=-06 . e ¢ o i
FORMAT (5X 22 (F12e635X) 51394 (5XsE12e6)) ' ‘
STOP e
END

e e e s
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