SAND75-0116
Unlimited Release

A SIMPLIFIED CALIBRATION SEQUENCE FOR SINGLE-ATOM MASS SPECTROMETERS

J. A. Panitz

Hit Sarid allanaties

Issued by Sandia Laboratories, operated for the United States Energy Research and Development Administration by Sandia Corporation.

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

SAND75-0116
Unlimited Release
Printed March 1975

A SIMPLIFIED CALIBRATION SEQUENCE

FOR SINGIE-ATOM MASS SPECTROMETERS

J. A. Panitz
Sandia Laboratories, Albuquerque, New Merico 87115

ABSTRACT

A calibration procedure is described for single-atom time-of-flight mass spectrometers which essentially applies a least-squares analysis to the measured parameters of voltage, distance and time in order to calculate the actual potential at the specimen surface, and any time delay associated with the measurements. A computer program numerically solves the required simultaneous equations by a variation of the Newton-Raphson method, quickly predicting the unknown desorption pulse amplitude and time delay to an accuracy of one part in 10^{5}.

The Field Desorption Spectrometer ${ }^{1}$ and conventional Atom-Probe Field Ion Microscope ${ }^{2}$ are time-of-flight analyzers which can determine the identity of field desorbed surface species if their energy, flight time and travel distance are known. Ion production is initiated by applying a short duration pulse of amplitude, P, to a suitable specimen pre-biased by a DC potential, V. If the duration of the pulse is made longer than the ion's travel time in the acceleration region near the specimen, the ion will quickly attain a kinetic energy determined only by the sum of the $D C$ bias and applied pulse amplitude. That is:

$$
\begin{equation*}
\frac{1}{2} m v_{t}^{2}=n e(V+P) \tag{1}
\end{equation*}
$$

where ne is the ion's charge, and v_{t} its final, or terminal, velocity. Since the travel time of the ion in the acceleration region between the positively biased specimen and grounded cathode is always smaller than its drift time in field-free space, its travel time is, to a very good approximation, just:

$$
\begin{equation*}
\tau \simeq d / v_{t} \tag{2}
\end{equation*}
$$

where d is the cathode-to-detector distance.
The ion selected for analysis is identified by its mass-to-charge ratio
expressed as a function of the total voltage, travel time, and distance. Combining equations (2) and (3) gives the desired result:

$$
\begin{equation*}
\left(\frac{m}{n}\right)_{0}=K(V+P) \tau^{2} \tag{3}
\end{equation*}
$$

where

$$
K \equiv \frac{0.193}{d^{2}}
$$

and $\left(\frac{m}{n}\right)_{0}$ is expressed in atomic mass units (amu) if $V_{d c}$ and $V_{\text {pulse }}$ are measured in kilovolts, τ is measured in microseconds, and d is measured in meters.

However, because of the specimen's angstrom dimensions and the DC bias which is usually several kilovolts, the desorption pulse transmission line to the specimen cannot be terminated with its characteristic impedance at the specimen surface. This results in an actual pulse amplitude at the specimen surface of αP where a is called the "pulse factor," and represents the result of transmission line reflections. Experimental difficulties in determining the precise travel time to the needed accuracy of a few nanoseconds means that the actual travel time, T differs from the measured time, t, by a "time-delay," δ. Rewriting equation (3) in terms of these new parameters gives:

$$
\begin{equation*}
\left(\frac{m}{n}\right)_{0}=K(V+\alpha P)(t \pm \delta)^{2} \tag{4}
\end{equation*}
$$

Calibration of the Field Desorption Spectrometer or Atom-Probe Field Ion Microscope requires a determination of the pulse factor, α, and time delay, δ. The purpose of this report is to elaborate upon the details of one of two calibration methods reported previously. ${ }^{3}$ Experience with both procedures has indicated that the one to be described is generally the more accurate and the simpliest to apply.

Assume that a species is produced whose identity is known either by field evaporating the substrate of a single-isotope specimen or by field desorbing a known adsorbate previously applied to the specimen surface. Further, assume that its
charge state is known from field evaporation theory or comparison with a species observed previously so that its mass to charge ratio, M, can be calculated. Then M is just the quantity which equation (4) would predict if α and δ were known. One is interested, then, in minimizing the difference between M and $\left(\frac{m}{n}\right)_{0}$ for each species observed. In minimizing this difference for i species, the square of the difference must also be minimized. That is, the quantity

$$
\begin{equation*}
\sum_{i}\left[M-K(V+\alpha P)(t \pm \delta)^{2}\right]^{2} \tag{5}
\end{equation*}
$$

is to be minimized with respect to the unknown quantities α and $\delta .{ }^{*}$ This can be accomplished by requiring that

$$
\begin{equation*}
\frac{\partial}{\partial \alpha} \sum_{i}\left[M-K(V+\alpha P)(t \pm \delta)^{2}\right]^{2}=0 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial}{\partial \delta} \sum_{i}\left[M-K(V+\alpha P)(t \pm \delta)^{2}\right]^{2}=0 \tag{7}
\end{equation*}
$$

where V, P, and t may vary for each species, but are known. Performing the indicated differentiations gives

$$
\begin{equation*}
\sum_{i}\left[M-K(V+\alpha P)(t \pm \delta)^{2}\right] P(t \pm \delta)^{2}=0 \tag{8}
\end{equation*}
$$

and

[^0]\[

$$
\begin{equation*}
\sum_{i}\left[M-K(V+\alpha P)(t \pm \delta)^{2}\right](V+\alpha P)(t \pm \delta)=0 \tag{9}
\end{equation*}
$$

\]

In order to calculate the best value of α and δ, equations (8) and (9) must be solved simultaneously. Their complexity requires a numerical solution, which may be obtained by direct application of the Newton-Raphson method. Reference 4 describes the general procedure in detail, which is applied here to the specific problem of determining α and δ. Equations (8) and (9) may be rewritten as follows:

$$
\begin{gather*}
K_{i}^{2} \sum_{i}\left[(V+\alpha P)(t+\delta)^{2}-\frac{M}{K}\right]\left[P(t+\delta)^{2}\right]=0 \tag{10}\\
K^{2} \sum_{i}\left[(V+\alpha P)(t+\delta)^{2}-\frac{M}{K}\right][(V+\alpha P)(t+\delta)]=0 \tag{11}
\end{gather*}
$$

where V_{i}, P_{i}, and t_{i} are the $D C$ voltage, pulse voltage, and observed travel time, respectively, which correspond to the $i^{\text {th }}$ species observed. M is defined as the mass-to-charge ratio of the known calibration species, and the time delay δ may be negative.

Equations (10) and (11) are of the form:

$$
\begin{align*}
& \xi(\alpha, \delta)=0 \tag{12}\\
& \eta(\alpha, \delta)=0 . \tag{13}
\end{align*}
$$

Let

$$
\begin{equation*}
a=a_{0}+a \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta=\delta_{0}+d \tag{15}
\end{equation*}
$$

where α_{0} and $\delta_{\text {o }}$ are approximate values for the pulse factor and time delay, and a and \underline{d} are the appropriate correction terms. Substitution of equations (14) and (15) into equation (12) and (13) and expanding in a Taylor series about α and δ, gives

$$
\begin{align*}
& \xi\left(\alpha_{0}+a, \delta_{0}+d\right) \approx \xi\left(\alpha_{0}, \delta_{0}\right)+a\left(\frac{\partial \xi}{\partial \alpha}\right)_{0}+a\left(\frac{\partial \xi}{\partial \delta}\right)_{0}=0 \tag{16}\\
& \eta\left(\alpha_{0}+a, \delta_{0}+d\right)=\eta\left(\alpha_{0}, \delta_{0}\right)+a\left(\frac{\partial \eta}{\partial \alpha}\right)_{0}+d\left(\frac{\partial \eta}{\partial \delta}\right)=0 \tag{17}
\end{align*}
$$

where terms in higher powers of a and \underline{d} as well as their products have been neglected, since the correction terms, a and $\underset{\text { d are assumed small. The subscript "o" attached }}{ }$ to each derivative corresponds to the subscript of α and δ, and indicates that the derivative is to be evaluated for these values of α and δ.

Equations (16) and (17) may be solved by the method of determinants for the initial correction terms $\underset{a}{ }$ and \underline{d}. These correction terms to α_{0} and δ 。 are just

$$
a=\frac{\left|\begin{array}{cc}
-\xi\left(\alpha_{0},\right. & \left.\delta_{0}\right) \tag{18}\\
\left(\frac{\partial \xi}{\partial \delta}\right)_{0} \\
-\eta\left(\alpha_{0}\right. & \left.\xi_{0}\right) \\
\left(\frac{\partial \eta}{\partial \delta}\right)_{0}
\end{array}\right|}{\left|\begin{array}{cc}
\left(\frac{\partial \xi}{\partial \alpha}\right)_{0} & \left(\frac{\partial \xi}{\partial \delta}\right)_{0} \\
\left(\frac{\partial \eta}{\partial \alpha}\right)_{0} & \left(\frac{\partial \eta}{\partial \delta}\right)_{0}
\end{array}\right|}
$$

$$
\alpha=\frac{\left|\begin{array}{ccc}
\left(\frac{\partial \xi}{\partial \alpha}\right)_{0} & -\xi\left(\alpha_{0}\right. & \left.\delta_{0}\right) \tag{19}\\
\left(\frac{\partial \eta}{\partial \alpha}\right)_{0} & -\eta\left(\alpha_{0},\right. & \left.\delta_{0}\right)
\end{array}\right|}{\left|\begin{array}{cc}
\left(\frac{\partial \xi}{\partial \alpha}\right)_{0} & \frac{\partial \xi}{\partial \delta} \\
0 \\
\left(\frac{\partial \eta}{\partial \alpha}\right)_{0} & \frac{\partial \eta}{\partial \delta} \\
0
\end{array}\right|}
$$

A corrected value for α and δ can now be obtained from equations (14) and (15), i.e.,

$$
\begin{align*}
& \alpha_{1}=\alpha_{0}+a \tag{20}\\
& \delta_{1}=\delta_{0}+d \tag{21}
\end{align*}
$$

These new values can be used to obtain a further correction, and the iteration process repeated as often as necessary to obtain the required accuracy. The calculation is terminated when the correction terms, a and d, are smaller than some assumed value. The simultaneous solution of equations (10) and (11) by this method requires the use of the following quantities:

$$
\begin{gather*}
\xi\left(\alpha_{1} \delta\right) \equiv K^{2} \sum_{i}\left[\left(v_{i}+\alpha P_{i}\right)\left(t_{i}+\delta\right)^{2}-\frac{M_{i}}{K}\right]\left[\left(v_{i}+P_{i}\right)\left(t_{i}+\delta\right)\right]=0 \tag{22}\\
\frac{\partial \xi}{\partial \alpha}=2 K^{2} \sum_{i}\left[\left(v_{i}+\alpha P_{i}\right)\left(t_{i}+\delta\right)^{2}-\frac{M_{i}}{2 K}\right]\left[P_{i}\left(t_{i}+\delta\right)\right] \tag{23}\\
\frac{\partial \xi}{\partial \delta}=3 K^{2} \Sigma\left[\left(v_{i}+\alpha P_{i}\right)\left(t_{i}+\delta\right)^{2}-\frac{M_{i}}{3 K}\right]\left[v_{i}+\alpha P_{i}\right] \tag{24}
\end{gather*}
$$

$$
\begin{gather*}
\eta(\alpha, \delta) \equiv K^{2} \sum_{i}\left[\left(V_{i}+\alpha P_{i}\right)\left(t_{i}+\delta\right)^{2}-\frac{M_{i}}{K}\right]\left[P_{i}\left(t_{i}+\delta\right)^{2}\right]=0 \tag{25}\\
\frac{\partial \eta}{\partial \alpha}=K^{2} \sum_{i}\left[P_{i}\left(t_{i}+\delta\right)^{2}\right]^{2} \tag{26}\\
\frac{\partial \eta}{\partial \delta}=(2 K)^{2} \sum_{i}\left[\left(V_{i}+P_{i}\right)\left(t_{i}+\delta\right)^{2}-\frac{M_{i}}{2 K}\right]\left[P_{i}\left(t_{i}+\delta\right)\right] \tag{27}
\end{gather*}
$$

The computer program which follows calculates the correction terms and \underline{a} that correspond to the given initial values α_{0} and δ_{0}. The resulting corrected values for α and δ are then used to generate a second-order correction and the iteration process repeated until α and δ, at succeeding cycles, differ by less than $1.0 \mathrm{X} 10^{-5}$. In practice, less than twenty cycles are required to achieve this accuracy. The resulting numbers are then rounded to two decimal places to give final values for the pulse factor and the time delay. One note of caution is in order. The effective pulse amplitude, αP, may actually be different for the different observed species since a species of large m / n will remain in the acceleration region near the specimen for a longer time than a species of small m / n. Thus, its kinetic energy will be affected more by the exact shape of the desorption pulse. This means that ideally, one should calibrate using known species having mass-to-charge ratios close to those of the unknown species of interest, otherwise an average value for α and δ is all that one can hope to achieve.

PROGRAM CALIB(INPUT, OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT)
r
ITERATION SCHENE FOR DETERMINING THE PULSE
FOR THE FIELD DESORPTION MASS SPECTROMETER.
DIMENSION $T(500), V(500), P(500), C M(500)$
1 FORMAT (3F10.4, I3)
2 FORMAT (4F10.4)
8 FORMAT(1 $1,22 \mathrm{X}, \mathrm{I} 4,18 \mathrm{X}, \mathrm{F} 6.3,18 \mathrm{X}, \mathrm{F} 8.5,18 \mathrm{X}, \mathrm{F} 10.8)$
11 FORMAT (1O1,40X, M/N = 1,F7.4,1 (V + (1,F5.4,1)P)(T+(1,F7.5,1))**2 1'///29X,70(1*1)///)
12 FURMAT (1HI, 32X, 'PARAMETERS FOR FUS CALIBRATIUN USING THE ASSIGNED 1CALIERATION SPECIES'///25X,'PULSE FACTOR $=1, F$ F. 4,0 OX,'TIME DELAY $2=1, F 8.4,1$ NANOSECONDS', O4X,'DISTANCE $=1, F 6.4,1$ METEKS'////O4X, 3'TIP VOLTAGE', O5X, 'PULSE-CABLE VULTAGE', O5X, 'PULSE AMPLITUDE', O7X, 4'NEAS TIME', $11 X,{ }^{\prime}$ 'CALC TIME', O8X, 'CALC TRAVEL TIME', O5X, Э'CALC M/N'/06X,'(KVOC)', 14X,'(KVDC)',15X,'CALC (KV)',09X,'(NANOSEC

12 FORMAT(12)
17 FORMAT('1'// D9X, ITERATION SCHEME FOR DETERMINING THE PULSE CORRE ICTION AND THE TINE CURRECTION FOR THE FIELD DESORPTIUN SPECTROMETE 2RI/3IX,'INITIAL PULSE FACTOR = ',F4. $2,05 \mathrm{O}$, ' INITIAL TIME DELAY = ', 3F6.3,' MICROSECONDS'///18X,'ITERATION CYCLE',OちX,'CORRECTED PULSE 4FACTOR', ($5 \times$, 'CORRECTED TIME DELAY', O6X,'MEAN-SQUARE DEVIATIUN'//)
19 FUKMAT (J6X,F6. $3,14 X, F 5.3,18 X, F 5.3,14 X, F 6.1,13 X, F 6.1,14 X, F 6.1,11 X$, 1F6.2)
21 FORMAT(01X///28X,70(1*')//54X,'END OF CALIBRATION')

READ(5,1) A,D,DI,KL
C A IS THE PULSE FACTOR, D IS THE TIME DELAY (NANOSECONOS), DI IS THE C DISTANCE (METERS), AND KL IS THE NUMBER OF DATA CAROS TO BE READ BY FORMAT ?

$$
\begin{aligned}
& A I N I T=A \\
& \text { DINIT }=\Pi \\
& \text { DO } 5 I=1, K L
\end{aligned}
$$

$\operatorname{READ}(5,2) \quad C M(I), P(I), V(I), T(I)$
C CM(I) IS THE CALIBRATION SPECIES ASSIGNED TO EACH MEASURED TRAVEL TIME, C P(I) IS THE PULSE-FORMING CABLE VOLTAGE (KV) CORKESPUNUING TO A TIP C VOLTAGE OF V(I) IN KV, AND THE MEASURED TRAVEL TIME, T(I), IN NANOSECONDS. note- the pulse forming cable voltage is twice the ideal pulse amplitude.

$$
5 T(I)=T(I) * 1 \cdot O E-03
$$

$A=A I N I T$
$D=$ DINIT
$D=D * 1 \cdot 0 E-03$
$C O N=(2 . *$. 160206$) /(1.65979 *(D I * * 2))$
WRITF $(6,17) \mathrm{A}, \mathrm{D}$
KOUNT=0
4 KOUNT $=$ KOUNT +1
$\mathrm{PH} I=0.0$
PHIA $=0.0$

```
        PHID=0.0
        PSI=0.0
        PSID=0.0
        SSQ=0.0
        DO 6 I = 1,KL
c
C CALIBRATION EQUATIONS
    C=CM(I)/CON
    TD=T(I)+D
    AP=A*P(I)
    \DeltaD=(V (I)+\DeltaP)*(TD**2)
    W=(AD-C)*P(I)*(TD**2)
    WI=(P(I)*(TD**2))**2
    W?=(AD-(C/2.))*P(T)*TD
    X=(AD-C)*(V(I)+AP)*TD
    X2=(AD-(C/3.))*(V(I)+AP)
    PHI=PHI +W
    PHIA =PHIA WI
    PHID=PHID+W2
    PSI=PSI +X
    PSID=PSID+X2
c
C calculate the sum of the squares of the mass difFERENCHS
    SSQ=SS(2+((CM(I)-(CON*AD))**2)
c
        6 CONTINUF
            SSQ=SSQ/KL
            PHI=PHI*CON**2
            PHIA=PHIA*CON**2
            PSIA=PHID*2.*CON**2
            PHID=PHID*4**OON**2
            PSI=PSI*CON**2
            PSID=PSID*3**CON**2
            Q=PHIA*PSID-PHID*PSIA
C
C CALCULATE CORRECTION TO PULSE FACTOR
    CORA=(PHID*PSI-PHT*PSID)/Q
C
C
C CALCULATE CORRECTION TO TIME DELAY
    CORD=(PHI*PSIA-PHIA*PSI)/Q
C
    A1=A
    DI=D
    WRITE(6;8) KOUNT,A,D,SSQ
    A=A+CORA
    D=D+CORD
    E=ARS(A-A1)
    F=ARS(D-DI)
C
C TEST FOR NUMBFR OF ITFRATION CYCLFS
    IF(KOUNT.GE.2OO) GO TO 10
C
C
```

C TEST FOR CONVERGENCE OF ITERATION SCHEME IF (E.LE••OOOO1•AND.F.LE••OOOO1) GO TO 10
C
GOTO 4
1? WRITE(6,11) CON,A,D
$D=O H 1 \cdot O F+03$
WRITE $(6,12) \quad A, D, D I$
$0020 \mathrm{I}=1, \mathrm{KL}$
$P]=A * P(I)$
$V_{1}=(V(I)+P 1) \div C O N$
$A M=V 1 *((T(I)+(D * 1 \cdot O F-03)) * * 2)$
$T M=T(I) * 1.0 E+03$
$\mathrm{TC}=\mathrm{CM}(\mathrm{I}) / \mathrm{Vl}$
$T A=S Q R T(T C) * 1 \cdot O E+03$
$T C=T A-D$
20 WRITF(6,19) V(I),P(I),Pl,TM,TC,TA,AM
WRITF (6,21)
STOP
FND

0.5	0.0	.1180	13	
1.000	2.000	1.521	170.0	
1.000	2.000	2.000	157.0	
1.000	2.000	2.503	146.0	
1.000	2.000	3.001	137.0	
1.000	2.000	3.505	129.5	
1.000	2.000	4.002	124.0	
1.000	2.000	4.503	119.0	
1.000	2.000	5.002	112.0	
1.000	2.000	5.508	108.5	
1.000	2.000	6.012	105.0	
1.000	2.000	6.505	103.5	
1.000	2.000	7.016	99.0	
1.000	2.000	8.004	093.0	

APPENDIX

Computer Program Legend
A - The pulse factor, α. For an ideally terminated cable, $A=0.5$ exactly one-half of the pulse-forming cable voltage, P.

D - The time delay, δ, in nanoseconds. The time delay can be positive or negative and is the time between the time from which all measurements of travel time are made (fiducial), to the time the desorption event actually occurs.

DI - The drift distance in meters between cathode and detector; a constant. If $D I$ is also to be determined, an initial best estimate of $D I$ is used to predict α and δ for one known species then incremented until, with the corresponding values of α and δ, the correct identity of a second known species is also predicted.

KL - The number of separate events used for the calibration sequence, which equals the number of date cards to be read by format 2 .
$C M(I)$ - The ith calibration species, M_{i}, in amu.
$P(I)$ - The corresponding pulse-forming cable voltage, in kilovolts.
$V(I)$ - The corresponding DC specimen bias, in kilovolts.
$T(I)$ - The corresponding measured travel time in nanoseconds.
AINIT - The initial value chosen for the pulse factor, usually the ideal value, 0.5 .

DINIT - The initial value chosen for the time delay, usually the ideal value, 0.0 nanoseconds.

CON - The constant, K, of equation (3).
KOUNT - The number of the iteration cycle being performed.
C - The constant M_{i} / K in equations (22)-(27).

PHI - Equation (25).
PHTA - Equation (26).
PHID - Equation (27).
PSI - Equation (22).
PSID - Equation (24).
PSIA - Equation (23).
SSQ - The mean of the sum-of-the-squares of the differences between actual and calculated mass-to-charge ratios in each iteration cycle.

CORA - The correction to the Pulse factor, Equation (18).
CORD - The correction to the time delay, Equation (19).
E - The absolute value of the difference between the pulse factors of two successive iteration cycles.
F - The absolute value of the difference between the time delays of two successive iteration cycles.
2. Program Output

The following is the output of the calibration program for the input data shown after the main program (above). Note that the "calculated travel time" is the actual travel time of the species, whereas the "calculated time" includes the time delay, and is equal to the input data shown under "measured time." "Pulse amplitude-calculated" includes the pulse factor, and "calculated m / n " is the calculated value of the input species using the calibration parameters. The input species was, again, $m / n=1.0\left(\mathrm{H}^{+}\right)$.
ITEGATION SCHFME FOR CETFRMINING THF DUI GF CORRFCTION AND THF TTME CORRECTION FOR THE FTELO CFSOPPTION SPECTROMETER

[^1]
REFERENCES

l. J. A. Panitz, J. Vac. Sci. Technol. 11, 206 (1974).
2. E. W. Müller, J. A. Panitz and S. B. McLane, Rev. Sci. Instr. 39, 83 (1968).
3. J. A. Panitz, S. B. McLane, and E. W. Müller, Rev. Sci. Instr. 40, 1321 (1969).
4. J. B. Scarborough, Numerical Mathematical Analysis (Johns Hopkins Press, Baltimore, 1966), p. 215.

Distribution:
5000 A. Narath
Attn: 5200 E. H. Beckner
5600 A. Y. Pope
5700 J. H Scott
5800 R. S. Claassen
5100 J. K. Galt
5110 F. L. Vook
5114 J. E. Houston
5114 J. A. Panitz (24)
3141 L. S. Ostrander (5)
3151 W. L. Garner (3)
For: ERDA/TIC (Unlimited Release)
ERDA/TIC (25)
(3171-1 R. P. Campbell)
8266 E. A. Aas (2)

[^0]: *For convenience, the subscript i associated with M, V, P, and t has been omitted.

[^1]: Paramfifug fob fic raligiation hsing the assignen calibration species

 FNO OF CALTARATYN

